mRNA/DNA and viral-vectored vaccines, may revolutionize influenza vaccine

manufacturing in the next decade and downstream processes will adapt to the new

production platforms. However, influenza quantification remains a challenge and

new techniques such as the SPR could play a critical role in the development of new

methods.

REFERENCES

[1] World Health Organization. (2018, September 20, 2021). Influenza – Seasonal.

Available: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)

[2] F. Krammer et al., “Influenza,” Nat. Rev. Dis. Primers, vol. 4, no. 1, p. 3, Jun. 2018.

[3] A. D. Iuliano et al., “Estimates of global seasonal influenza-associated respiratory

mortality: A modelling study,” Lancet, vol. 391, no. 10127, pp. 1285–1300, 2018.

[4] J. K. Taubenberger and J. C. Kash, “Influenza virus evolution, host adaptation, and

pandemic formation,” Cell Host Microbe, vol. 7, no. 6, pp. 440–451, Jun. 2010.

[5] A. H. Reid and J. K. Taubenberger, “The origin of the 1918 pandemic influenza virus:

a continuing enigma,” J. Gen. Virol., vol. 84, no. Pt 9, pp. 2285–2292, Sep. 2003.

[6] F. S. Dawood et al., “Estimated global mortality associated with the first 12 months

of 2009 pandemic influenza A H1N1 virus circulation: a modelling study,” Lancet

Infect. Dis., vol. 12, no. 9, pp. 687–695, 2012.

[7] A. J. Hay, V. Gregory, A. R. Douglas, and Y. P. Lin, “The evolution of human

influenza viruses,” Philos. Trans. R Soc. Lond B Biol. Sci., vol. 356, no. 1416,

pp. 1861–1870, Dec. 2001.

[8] D. P. Nayak, R. A. Balogun, H. Yamada, Z. H. Zhou, and S. Barman, “Influenza virus

morphogenesis and budding,” Virus Res., vol. 143, no. 2, pp. 147–161, Aug. 2009.

[9] M. C. Zambon, “Epidemiology and pathogenesis of influenza,” J. Antimicrob.

Chemother., vol. 44 Suppl B, pp. 3–9, Nov. 1999.

[10] S. Su, X. Fu, G. Li, F. Kerlin, and M. Veit, “Novel Influenza D virus: Epidemiology,

pathology, evolution and biological characteristics,” Virulence, vol. 8, no. 8,

pp. 1580–1591, Nov. 2017.

[11] B. E. Johansson and I. C. Brett, “Changing perspective on immunization against

influenza,” Vaccine, vol. 25, no. 16, pp. 3062–3065, Apr. 2007.

[12] M. Tafalla, M. Buijssen, R. Geets, and M. Vonk Noordegraaf-Schouten, “A compre-

hensive review of the epidemiology and disease burden of Influenza B in 9 European

countries,” Hum. Vaccin. Immunother, vol. 12, no. 4, pp. 993–1002, Apr. 2016.

[13] S. Boivin, S. Cusack, R. W. Ruigrok, and D. J. Hart, “Influenza A virus polymerase:

structural insights into replication and host adaptation mechanisms,” J. Biol. Chem.,

vol. 285, no. 37, pp. 28411–28417, Sep. 2010.

[14] World Health Organization. (2021, September 20, 2021). Global Influenza

Surveillance and Response System – GISRS. Available: https://www.who.int/

initiatives/global-influenza-surveillance-and-response-system

[15] C. Gerdil, “The annual production cycle for influenza vaccine,” Vaccine, vol. 21,

no. 16, pp. 1776–1779, 2003.

[16] F. Krammer and P. Palese, “Advances in the development of influenza virus vac-

cines,” Nat. Rev. Drug. Discov., vol. 14, no. 3, pp. 167–182, Mar. 2015.

[17] E. Sparrow et al., “Global production capacity of seasonal and pandemic influenza

vaccines in 2019,” Vaccine, vol. 39, no. 3, pp. 512–520, Jan. 2021.

[18] E. Milian and A. A. Kamen, “Current and emerging cell culture manufacturing

technologies for influenza vaccines,” Biomed. Res. Int., vol. 2015, p. 504831, 2015.

[19] S. S. Wong and R. J. Webby, “Traditional and new influenza vaccines,” Clin.

Microbiol. Rev., vol. 26, no. 3, pp. 476–492, Jul. 2013.

234

Bioprocessing of Viral Vaccines